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An experiment was developed as a simple alternative to existing analytical methods for the simultaneous quantitation of glucose
nd glucuronic acid (main product) in the bioprocesses Kombucha by using FTIR spectroscopy coupled to multivariate calibrati

east-squares, PLS-1 and artificial neural networks, ANNs). Wavelength selection through a novel ranked regions genetic algorith
as used to enhance the predictive ability of the chemometric models. Acceptable results were obtained by using the ANNs models

he complexity of the sample and the speediness and simplicity of the method. The accuracy on the glucuronic acid determination wa
y analysing spiked real fermentation samples (recoveries ca. 115%).
2005 Elsevier B.V. All rights reserved.
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. Introduction

An important branch of Biotechnology is currently
evoted to the development of processes for probiotics pro-
uction on different scales. An attractive bioprocess is con-
tituted for the glucose fermentative degradation produced
y a combination of a yeast (Schizosacaromyces pombe)
nd a bacteria (Acetobacter xylimun), usually namedKom-
ucha, which constitutes a generous probiotic producer[1–3].
his system yields a series of compounds like organic acids,
hich are very important, since some of them have health
eneficial properties. Among those acids the following can
e mentioned: glucuronic, gluconic, acetic, lactic, succinic,
annonic, propionic and ascorbic acids. The system also
roduces vitamins B1, B2, B3, B6 and B12 [3]. However,
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most properties of Kombucha are attributed to the ac
composition of the beverage. Its detoxifying property is
sumably due to the capacity of glucuronic acid to bin
toxin molecules and increase their excretion from organ
by the kidneys or the intestines[2]. Thus, several pathologi
produced by the accumulation of toxins in the body ma
relieved this way.

Several reports have been presented regarding the
mination of glucuronic and gluconic acids in fermentati
and foods, but they are exclusively based on separ
techniques like high performance liquid chromatogra
(HPLC) and capillary electrophoresis (CE)[4–8]. On the
other hand, Fourier transform infrared (FTIR) spectrosc
shows an enormous potential for the quantitative m
component analysis of complex samples, and in re
times, has been exploited as an alternative techniqu
fermentation monitoring. Recently presented example
the use of the more information-rich mid-infrared spe
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are the measurement of substances like glucose, acetic
and lactic acids, lactose, galactose and acetone–butanol
[9–11].

Since FTIR spectroscopy is a direct probe of molecular
vibrations, each molecule has unique absorption spectrum.
FTIR spectroscopy provides high information spectra and the
Lambert–Beer law is obeyed, making it possible to quantify
the concentration of several components also in a complex
sample using multivariate data analysis, consequently avoid-
ing time consuming separation steps prior measurement. On
the other hand, chemometric applications to improve infor-
mation obtained from modern instrumental data (i.e. spectral
and electrochemical data) in different fields have acquired
a routine character[12–22]. Partial least-squares (PLS) has
become a usual tool for multivariate calibration because of
the quality of the obtained calibration models, the ease of its
implementation and the availability of software[23,24]. It
allows a rapid determination of components, usually with no
need of a prior separation for analysis. An additional advan-
tage of such multivariate methods is that calibration can be
performed by ignoring the concentrations of all other compo-
nents except the analyte of interest. This makes these methods
especially appealing for the determination of the active com-
ponents in complex samples, whose components may show
analytical signals, which are severely overlapped with those
from the analytes. Pertinent examples of the application of
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2. Experimental

2.1. Reagents

All chemicals were analytical-reagent grade and used
without further purification. Nanopure water was used
throughout. Kombucha was obtained at Kombucha Magic
Mushroom Farm Inc.

2.2. Apparatus

FT-IR spectra were measured for all samples in a Perkin-
Elmer Spectrum RX1 FT-IR spectrophotometer, using a bar-
ium fluoride cell with an optical path of 25�m. The spectral
range was between 450 and 4400 cm−1 at 2 cm−1 intervals
(i.e., 1976 data points).

2.3. Software

All spectra were saved in ASCII format, and transferred
to a PC Pentium 750 microcomputer for subsequent manipu-
lation. All calculations were done using MATLAB 6.0[40].
PLS-1 was implemented using the MVC1 MATLAB tool-
box [41]. ANNs were implemented by using a home made
MATLAB routine.
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TIR coupled to multivariate methods are found in the l
ture[25–27].

Even though PLS assumes a linear relationship bet
he measured sample parameters and the intensity
bsorption bands, several authors have postulated that
eviations from linearity are acceptable as they can read
uppressed by including additional modeling factors[28–30].
owever, in the presence of substantial non-linearity,

ends to give large prediction errors and calls for more
ble models. Analogous considerations can be made
odeling complex and overlapped signals. Intrinsically n

inear calibration techniques such as non-linear partial l
quares (NPLSs)[28,31,32], locally weighted regressi
LWR) [28,32], alternating conditional expectations (AC
28] and artificial neural networks (ANNs)[33–38]are appli-
able in the latter cases. However, it is important to state
hese methods are computationally more complex than l
ethods, and they heavily depend on the amount and q
f data available[34].

The object of this experiment was to develop a sim
lternative to existing analytical methods for the simulta
us quantitation of glucose (substrate) and glucuronic
luconic acids (main products) in the bioprocesses K
ucha by using FTIR spectroscopy coupled to multiva
alibration (PLS-1 and ANNs), and exploit the possibility
avelength selection as a powerful tool to enhance the pr

ive ability. We have thus applied a very recently introdu
ethod for wavelength selection based in a simple and
enetic algorithm (GA), named RRGA (ranked regions G

39].
l

.4. Batch reactor setup

An infusion of commercial black tea and glucose was u
s medium, and a 3 L cylindrical vessel of thermal glass
ulture flask: Cole Palmer, Catalog Number E-29300-04)
sed as reactor. After sterilization at 105◦ C, the reactor wa
harged with 2 L of medium to which 20.0 g of Kombuc
et mass was added. Then, the system was stored at◦ C.
etails on the scheme of the reactor can be found in ref.[42].

.5. Calibration, validation and real samples

In the presently studied fermentation samples, the ana
f interest are embedded in a complex mixture of a large n
er of components. Moreover, the analyst occasionally
ot possess the information corresponding to the com

ion of the sample, although an estimation of the compon
an be made and an artificial calibration set can be bu
rder to take into account all possible variability source

he instrumental response. In view of these considerat
wo replicates of a 15 sample set were built to be use
he calibration step when applying chemometic tools. E
eplicate of the artificial calibration set consisted of 15 s
les corresponding to a central composite design with
entral sample (in this case mixtures of the studied c
onents in five concentration levels with one blank ma
ample), with the concentrations of the three analytes
n the known linear absorbance-concentration range. Th
f the matrix components were added from a blank solu
ontaining: acetic acid, 3.0 g L−1, lactic acid, 0.6 g L−1 and
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Table 1
Sample set used for calibrating PLS and training ANNs models

Sample Glucuronic
acid (g L−1)

Gluconic
acid (g L−1)

Glucose
(g L−1)

1 0.07 0.60 5.56
2 9.63 0.60 5.56
3 4.81 0.04 5.56
4 4.81 1.16 5.56
5 4.81 0.60 0.62
6 4.89 0.60 10.51
7 1.98 0.32 3.09
8 7.72 0.32 3.09
9 1.98 0.92 3.09

10 7.72 0.92 3.09
11 1.98 0.60 8.65
12 7.72 0.32 8.65
13 2.05 0.92 8.65
14 7.72 0.92 8.65
15 4.81 0.60 5.56

ethanol, 0.5 g L−1 prepared in the infusion of commercial
black tea without glucose. The corresponding concentration
of glucose and glucuronic and gluconic acids can be seen in
Table 1. Both replicates were prepared to be used as training
and monitoring sets when applying ANNs (seeTable 1).

On the other hand, a nine samples validation set was
prepared in order to validate the chemometric models. The
analytes concentrations were chosen in a randomized way,
but spanning the concentration range of the calibration set
(seeTable 3). Calibration and validation sets were prepared
by placing suitable amounts of each compound and complet-
ing to the flask mark with the blank solution. All mixtures
were measured in random order.

Finally, samples were taken from the fermentation pro-
cess at two different times (initial and seven fermentation
days), filtered and undergone to the measurement procedure
In order to perform a recovery study, real samples were spiked
with glucuronic acid. This analyte was chosen for being the
one at which the properties of the probiotic are attributed[2].

2.6. Genetic algorithm implementation

It is now widely accepted that multivariate calibration
techniques such as partial least-squares greatly benefit from
appropriate sensor selection[43–46]. Models constructed
u r than
f ma-
t ples
w n
m neal-
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[ egies
[
a t allow
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a m-
p ntly

studied case. Genetic algorithms are promising numerical
optimization techniques which mimic natural selection pro-
cesses[52–54], and are particularly appealing for avoiding
such extensive searches. They are being increasingly used
for variable selection in diverse areas of chemistry: mass
spectrometry[55], near-infrared (NIR)[56] and mid-infrared
spectroscopies[57], quantitative structure activity relation-
ship (QSAR)[58], classification problems[59,60], selection
of the best principal components for multivariate models[61],
etc.

The RRGA applied in the present report, was implemented
starting with a population of 40 chromosomes, initialized
with 20% of all wavelengths selected at random from the
full spectral range. Each gene was chosen to encode regions
of five consecutive data points. The single crossover scheme
with 50% probability was employed for recombination (the
alternative multiple crossover procedure gave similar results),
and a probability of 0.05 was applied to mutations after off-
springs were produced. The algorithm was stopped after 100
generations.

In order to define the objective function to be optimized,
the calibration set was randomly divided into two subsets,
one used for calibration (including 70% of the calibration
samples) and the other one for monitoring (the remaining
samples), and the process was repeated three times using
different random seeds for partitioning the calibration set.
T val-
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sing a suitably restricted subset of spectral data rathe
ull spectra are extremely successful in extracting infor
ion for the prediction of analyte concentrations in sam
ith complex background constituents[14]. Several selectio
ethods have been reported. They include simulated an

ng [47], artificial neural networks[48], genetic algorithm
49], and extensive searches using moving window strat
50], among a great variety of other techniques (see ref.[51]
nd references therein). Comprehensive searches do no

or the selection of multiple wavelength regions, because
ctivity is prohibitively time consuming for spectra co
osed of a large number of data points like the prese
.

he root mean square error of prediction (RMSEP)
es were then calculated for a number of factors ran

rom 1 to a certain maximum (estimated from full spec
ross-validation on the complete calibration data set). In
f these three calibration/prediction procedures, the m
um error (RMSEPmin) was first considered, but the selec
MSEP was the one which was not higher than the pro
α,Ical−A,Imon−A × RMSEPmin (Fα,Ical−A,Imon−A is the statis

ical F ratio computed forα = 0.05 withIcal− A andImon− A
egrees of freedom,IcalandImonare the number of calibratio
nd monitoring samples in the subsets, andA the number o
pectral factors)[62]. This procedure mimics the usual sel
ion of factors by cross-validation and avoids the inclus
f a factor-depending term into the objective function.

hree selected RMSEP values were then averaged, de
he figure of merit to be minimized by the algorithm. Af
topping the GA, the following steps were implemented

1) Repeat the above calculations a number of times
in the present work), registering a statistical histog
of the inclusion of a given sensor range in the final
chromosome. Each time the calculation is repeated
random partitioning of the calibration set (see abov
performed again.

2) Select the sensor ranges included in the histogram
tain percentage of times above a threshold, for exam
70%.

3) Perform cross-validation using the sensors obtaine
step (2) in order to re-estimate the number of factor
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(4) Repeat steps (1) through (3), reinitializing the GA with
the sensors obtained in step (2) and setting the maximum
number of factors as obtained in step (3). Continue until
the sensors selected in step (2) stabilize.

(5) Use the wavelengths selected in step (2) for PLS/ANNs
model building and prediction.

3. Results and discussion

3.1. Spectral behaviour of the analytes and matrix

Fig. 1A, shows the FTIR spectra corresponding to solvent,
two individual pure components (glucose and glucuronic
acid) and a 7 days ferment solution, all of them collected
from aqueous solutions. The concentrations of the analytes
were 10 g L−1. As can be seen, an intense overlapping exists

F
c
1
l
i
r
v

between the spectra. The solvent contribution is particularly
important at 3920, 3490 and 3280 cm−1 (O H stretching)
and 1645 cm−1 (H O H bending)[63]. For the latter reason,
only the region 1300–900 cm−1 is useful for the quantitative
analysis of the target analytes, as can be seen inFig. 1B.
Fortunately, the most intense bands present at glucose and
glucuronic acid are those located between 1200 and 900 cm−1

due to C O C stretching vibrations[11].

3.2. Application of multivariate tools

3.2.1. PLS-regression
PLS, a standard method for analysing multicomponent

mixtures, has been systematically applied in a significant
variety of samples. The presence of certain types of mild
non-linearities can in principle be modelled by PLS using
additional spectral factors[34]. In order to apply both PLS-
1 and ANNs models, signals for the standard samples were
recorded in the range 4400–450 cm−1. These spectra were
then subjected to PLS-1 analysis for a reduced region in
which the problem of the solvent interference is alleviated
(1400–900 cm−1) and the one selected by using genetic algo-
rithms. The corresponding statistical parameters for the PLS
models are shown inTable 2. This table shows the spectral
regions, the optimum number of factors used for calibration,
the root mean square error for cross-validation (RMSECV),
t f the
c
b ows
o ume
a wn
c ne
t les to
b en in
T r glu-
c n is
u to
t
t c-
t els.
O suf-
fi not
ig. 1. (A) FTIR spectra in the complete spectral range (4500–700 cm−1)
orresponding to water (black solid line), water solution of glucuronic acid
0.0 g L−1 (green solid line), water solution of glucose 10.0 g L−1 (red solid

ine) and a 7 days ferment (blue solid line). (B) The four FTIR spectra of (A)
n the working reduced range (1500–900 cm−1). (For interpretation of the
eferences to colour in this figure legend, the reader is referred to the web
ersion of the article.)

p
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b The
o n be
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p sults
f etely
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ion
1 ctra
c were
o these
s ering
t hen
he relative error of prediction (REP%), and the square o
orrelation coefficient for cross-validation (r2) for the cali-
ration set. The optimum number of factors – which all
ne to model the system with the optimum data vol
voiding over fitting – was determined with the well kno
ross-validation procedure[12]. This procedure removes o
raining sample at a time and uses the remaining samp
uild the latent factors and regression. As can be se
able 2, the calibration parameters are good enough fo
ose and glucuronic acid when the GA-selected regio
sed for modelling, but not for gluconic acid. According

he selected regions, the glucose peak at ca. 1180 cm−1 and
he glucuronic acid peak at ca. 1180 cm−1 are the most sele
ive for the enhancement of the quality of the built mod
n the contrary, for gluconic acid probably there is no

cient sensitivity, and consequently its determination is
ossible at the present conditions.

Table 3shows the prediction results when applying
ests PLS-1 models to the nine validation samples.
btained results for glucuronic acid (REP% = 15.5) ca
onsidered acceptable if one takes into account the
lexity of the studied system. On the other hand, bad re

or glucose (REP% = 27.7) were obtained, and a compl
nacceptable REP% = 122.0 for gluconic acid was foun

Fig. 2 shows the calibration spectra in the reg
400–900 cm−1. This later figure also shows three spe
orresponding to real fermentation samples. Bad results
btained when the determination of the three analytes in
amples was made. This fact could be explained consid
hat all the interferences were not correctly modelled w



V.G. Franco et al. / Talanta 68 (2006) 1005–1012 1009

Table 2
Spectral regions and statistical parameters for the calibration

Glucuronic acid Gluconic acid Glucose

Total GA Total GA Total GA

Spectral region (wavenumbers) 1400–900 1205–1165 1300–900 1082–1002 1300–900 1795–1781, 1077–1070
Factors 5 5 5 5 6 4
RMSECV 1.51 0.24 0.47 0.34 1.47 0.38
REP% 30 5.41 54.5 26.21 25.7 6.13
r2 0.513 0.985 0.273 0.523 0.553 0.981

Table 3
Results obtained when applying PLS at the GA-selected wave numbers on
the validation set

Sample Glucuronic
acid (g L−1)

Gluconic acid
(g L−1)

Glucose
(g L−1)

Actual Found Actual Found Actual Found

1 2.48 2.42 0.25 0.48 2.48 2.62
2 2.48 2.13 0.49 0.66 2.48 2.06
3 2.48 2.99 0.77 1.02 2.48 2.22
4 4.96 3.89 0.25 0.98 4.96 4.21
5 4.96 4.06 0.49 0.95 4.96 4.84
6 4.96 4.85 0.77 −0.40 4.96 3.52
7 7.5 7.30 0.25 0.80 7.5 7.11
8 7.5 7.80 0.49 0.96 7.5 6.50
9 7.5 7.07 0.77 0.93 7.5 7.60

REP% 15.5 122.0 27.7

building the calibration set. But a principal component anal-
ysis (Fig. 3) showed similarity among the spectra plotted in
Fig. 2. On the other hand, a residual versus PLS predicted
values for all the three analytes as suggested in ref.[28] is
shown inFig. 4. In the latter figure it can clearly seen the pres-
ence of non-linearity. This fact could indicate the presence of
other phenomena like non-linearities. Therefore, the use of a
more robust chemometric method should be postulated.

F ples
i n
o to the
w

Fig. 3. Score plot for first and second principal components for the fifteen
calibration samples (red circles) and real samples (blue stars). (For interpre-
tation of the references to colour in this figure legend, the reader is referred
to the web version of the article.)

3.2.2. Artificial neural networks
ANNs are calibration methods especially created to model

non-linear information, although they are also able to deal
with a linear behaviour and can often improve the results
in comparison with a linear model. The so-called multilayer
feed-forward networks[34,64]are often used for prediction
as well as for classification. In the present work we have used
an ANN that consists of three layers of neurons or nodes,
which are the basic computing units: the input layer with
ig. 2. FTIR spectra of calibration (black solid lines) and three real sam
n the restricted region (1300–900 cm−1) (blue circles). (For interpretatio
f the references to colour in this figure legend, the reader is referred
eb version of the article.)
 Fig. 4. Residual vs. PLS predicted values plot.
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a number of active neurons corresponding to the predictor
variables in regression, and one hidden layer with a number
of active neurons. The input and the hidden layer numbers are
optimised during training, and the output layer has just one
unit. The neurons are connected in a hierarchical manner, i.e.,
the outputs of one layer of nodes are used as inputs for the
next layer and so on. In the hidden layer the sigmoid function
f(x) = 1/(1 + e−x) is used, and the output of the hidden neuron
j, Oj, is calculated as:

Oj = f

[
m∑

i=1

(siwij + wbj)

]
(1)

wheresi is the input from neuroni in the layer above, to
neuronj in the hidden layer,wij are the connection weights
between neuronsi and j, wbj is the bias to neuronj andm
is the total number of neurons in the layer above. Both in
the input and output layers linear functions are used. In the
presently used ANN, learning is carried out through the back-
propagation rule[34,64]. It is important to stress that ANNs
trained with this rule have a remarkable advantage: there is
no need to know the exact form of the analytical function on
which the model should be built. Thus, neither the functional
type nor the number of parameter in the model needs to be
given[64].

ples
w used
a used
a and
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Table 4
Statistical parameters for the ANNs models

Paŕametros Glucuronic acid Gluconic acid Glucose

Architecture [2,3,1] [3,3,1] [3,2,1]

Spectral region (cm−1) 1205–1165 1082–1002 1795–1781
1077–1070

RMSEPcal 1.24 1.13 0.879
RMSEPmon 1.34 1.05 1.08
rcal

2 0.965 0.954 0.989
rmon

2 0.971 0.956 0.978
Weights 12 16 12

itoring set (RMSEPmon). On the other hand, it is important
to consider that the ANN should not be overtrained, fact that
can be managed by taking into account that the number of
objects should not be exceed that for the adjustable weights.
In the presently trained for glucuronic acid ANNs, weights
were (3× 4× 1 = 12). These figures were obtained after con-
sidering the number of input and hidden layers plus one bias
neuron on each layer. It should be noted that the latter num-
ber computed for gluconic acid is equal to 16 indicating an
overtraining, but the determination of this component is not
advised considering the lack of accuracy calculated in the
present study.

ANNs were applied with significant improvement of the
PLS obtained results.Table 5shows the results obtained when
this non-parametric multivariate model was applied on the
nine samples validation set. As can be seen the improvement
on the prediction observed when ANNs are applied (ca. 50%)
explains the power of this method not only in modelling non-
linearities but also in solving complex and overlapped signals.
The agreement between the predicted and the actual concen-
trations, although is not excellent for glucuronic acid and
glucose, demonstrate the potential of the method to simul-
taneously distinguish and quantify both components in the
studied concentration range.

Finally, ANNs were applied on four real fermentation
samples in order to predict the acid glucuronic concentration
a enta-
t nown
a f the

T
R

S Glucon

Actual

1 0.25
2 0.49
3 0.77
4 0.25
5 0.49
6 0.77
7 0.25
8 0.49
9 0.77

R

One of the two calibration sets, consisting of 15 sam
as used to train the ANNs. The other calibration set was
s monitoring set. The nine samples validation set was
s the test set for checking the ANNs predictive ability

or comparison between both calibration models. The n
er of neurons in the input hidden layers was optimise

rial and error. The finally selected architecture for the t
omponents is displayed inTable 4. The numbers betwe
rackets indicate how many active neurons are employ
ach layer. This means that the employed architecture ha

nput neurons, three hidden neurons and a single outpu
on for glucuronic acid. In order to find the best model, e
NN was trained with the above-mentioned training set

t was subsequently stopped before it learns idiosyncr
resent in the training data. This was achieved by sear

he minimum value of the root mean square error for the m

able 5
esults obtained when applying ANNs on the validation set

ample Glucuronic acid (g L−1)

Actual Found

2.48 2.75
2.48 2.38
2.48 2.94
4.96 5.25
4.96 4.87
4.96 4.84
7.5 7.23
7.5 7.48
7.5 8.53

EP% 9.7
t the beginning of the process and after seven ferm
ion days. Besides, these samples were spiked with k
mounts of the analyte in order to compute the recovery o

ic acid (g L−1) Glucose (g L−1)

Found Actual Found

0.24 2.48 2.95
0.42 2.48 2.28
1.06 2.48 2.99
0.34 4.96 5.55
0.27 4.96 4.55
0.51 4.96 4.50
0.70 7.5 7.03
0.80 7.5 7.78
0.62 7.5 8.69

28.0 10.0
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Table 6
Results obtained on the glucuronic acid spiked real samples by using the FTIR/ANNs model

Sample Glucuronic acid (g L−1)

Predicted in fermentation Spiked Predicted after addition Recovery (%)

1a 4.1 (4) 8.6 14.5 121
4.3 (4) 8.8 14.8 119
4.0 (4) 8.4 14.3 123

2b – 10.2 12.2 120
– 10.5 12.8 122
– 10.3 11.5 112

2a 4.0 (1) 10.4 15.4 110
4.2 (1) 11.1 16.2 108
4.1 (1) 10.1 15.7 115

3b – 10.4 11.0 106
– 10.2 9.9 97
– 10.4 10.5 101

3a 5.4 (3) 10.5 19.9 138
5.4 (3) 10.7 18.5 122
5.4 (3) 10.1 20.5 150

4b – 10.2 12.2 120
– 10.2 13.9 136
– 10.2 12.6 124

4a 5.5 (3) 10.7 14.2 81
5.4 (3) 10.4 12.5 68
5.2 (3) 10.1 11.7 64

a Seven days of fermentation.
b Initial.

analytical methodology.Table 6shows the results obtained
before and after the spiking. Recoveries over 100% in most
of the cases are indicative of a positive systematic error. Nev-
ertheless, considering the complexity of the sample and the
speediness and simplicity of the method, the results should be
considered acceptable. In addition, the automation possibility
is other advantage of the present method.

4. Conclusion

FTIR spectroscopy combined with chemometric data eval-
uation becomes an excellent tool for evaluating complex sys-
tems like the presently studied one. Region selection through
a novel genetic algorithm was able to enhance the predictive
ability of artificial neural networks. Two compounds were
measured simultaneously with a reasonably good accuracy,
though simplifying and speeding up the analysis.
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[20] M. Blanco, J. Coello, H. Iturriaga, S. Maspoch, C. De la Pezuela,

Anal. Chim. Acta 333 (1996) 147.
[ em.
ATLAB routine.

21] N.R. Marsilli, M.S. Sobrero, H.C. Goicoechea, Anal. Bioanal. Ch

376 (2003) 126.



1012 V.G. Franco et al. / Talanta 68 (2006) 1005–1012

[22] A. Marchesini, M. Wiliner, V. Mantovani, J. Robles, H.C.
Goicoechea, J. Pharm. Biomed. Anal. 31 (2003) 39.

[23] B.K. Lavine, Anal. Chem. 72 (2000) 91R.
[24] P. Damiani, G. Escandar, A. Olivieri, H. Goicoechea, Curr. Pharm.

Anal. 1 (2005) 145.
[25] T. Scheper, B. Hitzmann, E. Stark, R. Faurie, P. Sosnitza, K.F. Rear-

don, Anal. Chim. Acta 400 (1999) 121.
[26] J.W. Hall, B. McNeil, M.J. Rollins, I. Draper, B.G. Thompson, G.

Macaloney, Appl. Spectrosc. 50 (1996) 102.
[27] P.J. Brimmer, J.W. Hall, Can. J. Appl. Spectrosc. 38 (1993) 155.
[28] V. Centner, O.E. de Noord, D.L. Massart, Anal Chim. Acta 376

(1998) 153.
[29] P.J. Gemperline, J.R. Long, V.G. Gregoriou, Anal. Chem. 63 (1991)

2313.
[30] S. Sekulic, M.B. Seasholtz, Z. Wang, B.R. Kowalski, S.E. Lee, B.R.

Holt, Anal. Chem. 65 (1993) 835A.
[31] P.J. Gemperline, J.R. Long, V.G. Gregoriou, Anal. Chem. 63 (1991)

2313.
[32] S. Wold, N. Kettaneh-Wold, B. Skagerberg, Chemom. Intell. Lab.

Syst. 7 (1989) 53.
[33] S. Wold, Chemom. Intell. Lab. Syst. 14 (1992) 71–84.
[34] F. Despagne, D.L. Massart, Analyst 123 (1998) 157R.
[35] P.J. Gemperline, J.R. Long, V.G. Gregoriou, Anal. Chem. 63 (1991)

2313.
[36] R.M. Carvalho, C. Mello, L.T. Kubota, Anal. Chim. Acta 420 (2000)

109.
[37] Q. Li, X. Yao, X. Chen, M. Liu, R. Zhang, X. Zhang, Z. Hu, Analyst

125 (2000) 2049.
[38] L. Hadjiiski, P. Geladi, P. Hopke, Chemom. Intell. Lab. Syst. 49

(1999) 91.
[39] H.C. Goicoechea, A.C. Olivieri, J. Chemom. 17 (2003) 338.
[ SA,

[ .

[ etta,
67;

[ al.

[44] M.J. McShane, G.L. Cote, C.H. Spiegelman, Appl. Spectrosc. 51
(1997) 1559.

[45] C.H. Spiegelman, M.J. McShane, M.J. Goetz, M. Motamedi, Q.L.
Yue, G.L. Cote, Anal. Chem. 70 (1998) 35.

[46] J.H. Jiang, R.J. Berry, H.W. Siesler, Y. Ozaki, Anal. Chem. 74 (2002)
3555.
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