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Abstract

An experiment was developed as a simple alternative to existing analytical methods for the simultaneous quantitation of glucose (substrate)
and glucuronic acid (main product) in the bioprocesses Kombucha by using FTIR spectroscopy coupled to multivariate calibration (partial
least-squares, PLS-1 and artificial neural networks, ANNs). Wavelength selection through a novel ranked regions genetic algorithm (RRGA)
was used to enhance the predictive ability of the chemometric models. Acceptable results were obtained by using the ANNs models considering
the complexity of the sample and the speediness and simplicity of the method. The accuracy on the glucuronic acid determination was calculated
by analysing spiked real fermentation samples (recoveries ca. 115%).
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction most properties of Kombucha are attributed to the acidic
composition of the beverage. Its detoxifying property is pre-
An important branch of Biotechnology is currently sumably due to the capacity of glucuronic acid to bind to
devoted to the development of processes for probiotics pro-toxin molecules and increase their excretion from organism
duction on different scales. An attractive bioprocess is con- by the kidneys or the intesting®]. Thus, several pathologies
stituted for the glucose fermentative degradation produced produced by the accumulation of toxins in the body may be
by a combination of a yeast (Schizosacaromyces pombe)  relieved this way.
and a bacteria (Acetobacter xylimun), usually namé@nm- Several reports have been presented regarding the deter-
bucha, which constitutes a generous probiotic prod(iteB]. mination of glucuronic and gluconic acids in fermentations
This system yields a series of compounds like organic acids,and foods, but they are exclusively based on separative
which are very important, since some of them have health techniques like high performance liquid chromatography
beneficial properties. Among those acids the following can (HPLC) and capillary electrophoresis (CE)-8]. On the
be mentioned: glucuronic, gluconic, acetic, lactic, succinic, other hand, Fourier transform infrared (FTIR) spectroscopy
mannonic, propionic and ascorbic acids. The system alsoshows an enormous potential for the quantitative multi-
produces vitamins B By, Bg, Bg and B> [3]. However, component analysis of complex samples, and in recent
times, has been exploited as an alternative technique for
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are the measurement of substances like glucose, acetiQ. Experimental
and lactic acids, lactose, galactose and acetone—butanol
[9-11]. 2.1. Reagents

Since FTIR spectroscopy is a direct probe of molecular
vibrations, each molecule has unique absorption spectrum. All chemicals were analytical-reagent grade and used
FTIR spectroscopy provides high information spectra and the without further purification. Nanopure water was used
Lambert—Beer law is obeyed, making it possible to quantify throughout. Kombucha was obtained at Kombucha Magic
the concentration of several components also in a complexMushroom Farm Inc.
sample using multivariate data analysis, consequently avoid-
ing time consuming separation steps prior measurement. On2.2. Apparatus
the other hand, chemometric applications to improve infor-
mation obtained from modern instrumental data (i.e. spectral  FT-IR spectra were measured for all samples in a Perkin-
and electrochemical data) in different fields have acquired EImer Spectrum RX1 FT-IR spectrophotometer, using a bar-
a routine charactgil2—22]. Partial least-squares (PLS) has ium fluoride cell with an optical path of 3om. The spectral
become a usual tool for multivariate calibration because of range was between 450 and 4400<¢nat 2 cni ! intervals
the quality of the obtained calibration models, the ease of its (i.e., 1976 data points).
implementation and the availability of softwaj23,24]. It
allows a rapid determination of components, usually with no 2.3. Software
need of a prior separation for analysis. An additional advan-
tage of such multivariate methods is that calibration can be  All spectra were saved in ASCII format, and transferred
performed by ignoring the concentrations of all other compo- to a PC Pentium 750 microcomputer for subsequent manipu-
nents exceptthe analyte of interest. This makes these methodfation. All calculations were done using MATLAB 6[@0].
especially appealing for the determination of the active com- PLS-1 was implemented using the MVC1 MATLAB tool-
ponents in complex samples, whose components may showbox [41]. ANNs were implemented by using a home made
analytical signals, which are severely overlapped with those MATLAB routine.
from the analytes. Pertinent examples of the application of
FTIR coupled to multivariate methods are found in the liter- 2.4. Batch reactor setup
ature[25-27].

Even though PLS assumes a linear relationship between Aninfusion of commercial black tea and glucose was used
the measured sample parameters and the intensity of itsas medium, and a 3L cylindrical vessel of thermal glass (3L
absorption bands, several authors have postulated that smaltulture flask: Cole Palmer, Catalog Number E-29300-04) was
deviations from linearity are acceptable as they can readily beused as reactor. After sterilization at 2@5, the reactor was
suppressed by including additional modeling facfags-30]. charged with 2 L of medium to which 20.0 g of Kombucha
However, in the presence of substantial non-linearity, PLS wet mass was added. Then, the system was stored &.28
tends to give large prediction errors and calls for more suit- Details on the scheme of the reactor can be found iri42f.
able models. Analogous considerations can be made when
modeling complex and overlapped signals. Intrinsically non- 2.5. Calibration, validation and real samples
linear calibration techniques such as non-linear partial least-

squares (NPLSs)28,31,32], locally weighted regression Inthe presently studied fermentation samples, the analytes
(LWR) [28,32], alternating conditional expectations (ACE) of interestare embedded in a complex mixture of a large num-
[28] and artificial neural networks (ANN§33—38]are appli- ber of components. Moreover, the analyst occasionally does

cable in the latter cases. However, it is important to state thatnot possess the information corresponding to the composi-
these methods are computationally more complex than lineartion of the sample, although an estimation of the components
methods, and they heavily depend on the amount and qualitycan be made and an artificial calibration set can be built in
of data availabl¢34]. order to take into account all possible variability sources on
The object of this experiment was to develop a simple the instrumental response. In view of these considerations,
alternative to existing analytical methods for the simultane- two replicates of a 15 sample set were built to be used for
ous quantitation of glucose (substrate) and glucuronic andthe calibration step when applying chemometic tools. Each
gluconic acids (main products) in the bioprocesses Kom- replicate of the artificial calibration set consisted of 15 sam-
bucha by using FTIR spectroscopy coupled to multivariate ples corresponding to a central composite design with one
calibration (PLS-1 and ANNSs), and exploit the possibility of central sample (in this case mixtures of the studied com-
wavelength selection as a powerful tool to enhance the predic-ponents in five concentration levels with one blank matrix
tive ability. We have thus applied a very recently introduced sample), with the concentrations of the three analytes lying
method for wavelength selection based in a simple and fastin the known linear absorbance-concentration range. The rest
genetic algorithm (GA), named RRGA (ranked regions GA) of the matrix components were added from a blank solution
[39]. containing: acetic acid, 3.0 g1, lactic acid, 0.6 gL! and



V.G. Franco et al. / Talanta 68 (2006) 1005-1012 1007

Table 1 studied case. Genetic algorithms are promising numerical

Sample set used for calibrating PLS and training ANNs models optimization techniques which mimic natural selection pro-

Sample Glucuronic Gluconic Glucose cesseg52-54], and are particularly appealing for avoiding
acid (gL™) acid (gL") o) such extensive searches. They are being increasingly used

1 0.07 0.60 5.56 for variable selection in diverse areas of chemistry: mass

2 9.63 0.60 5.56 spectrometry55], near-infrared (NIR)56] and mid-infrared

j jzgi 2:(1)2 2:22 spectroscopiefb7], quantitative structure activity relation-

5 281 0.60 0.62 ship (QSAR)[58], classification problem&9,60], selection

6 4.89 0.60 10.51 ofthe best principal components for multivariate modiels,

7 1.98 0.32 3.09 etc.

8 7.72 0.32 3.09 The RRGA applied in the present report, was implemented
1?) %Z?g 8:3; 2:83 starting with a population of 40 chromosomes, initialized
11 108 0.60 8.65 with 20% of all wavelengths selected at random from the
12 7.72 0.32 8.65 full spectral range. Each gene was chosen to encode regions
13 2.05 0.92 8.65 of five consecutive data points. The single crossover scheme
14 7.72 0.92 8.65 with 50% probability was employed for recombination (the
15 4.81 0.60 5.56

alternative multiple crossover procedure gave similar results),
and a probability of 0.05 was applied to mutations after off-
springs were produced. The algorithm was stopped after 100
generations.

In order to define the objective function to be optimized,
the calibration set was randomly divided into two subsets,
%ne used for calibration (including 70% of the calibration
samples) and the other one for monitoring (the remaining
samples), and the process was repeated three times using
different random seeds for partitioning the calibration set.

ethanol, 0.5gL! prepared in the infusion of commercial
black tea without glucose. The corresponding concentration
of glucose and glucuronic and gluconic acids can be seen in
Table 1. Both replicates were prepared to be used as trainin
and monitoring sets when applying ANNs (Seble 1).

On the other hand, a nine samples validation set was
prepared in order to validate the chemometric models. The
analytes concentrations were chosen in a randomized WaYrha root mean square error of prediction (RMSEP) val-
but spanning the concentration range of the calibration Set a5 were then calculated for a number of factors ranging
(seeTal_aIe 3)'. Calibration and validation sets were prepared from 1 to a certain maximum (estimated from full spectral
by placing suitable amounts of each compound and COm|0|et'cross—validation on the complete calibration data set). In each

ing to the flasl:jmark \:jwth th% blank solutian. All mixtures of these three calibration/prediction procedures, the mini-
were measured in random order. mum error (RMSER,n) was first considered, but the selected

o5 Sl e ke o e ermentlon - RS L ons i we ot g e roc
Fo, 1o~ A Imon—A X RMSERNin (Fo, 10— A, Imon—4 1S the statis-

days), filtered and undergone to the measurement procedureﬁcalF ratio computed fot = 0.05 With/eg) — A andimon — A
Inorderto perform arecovery study, real samples were spikeddegrees of freedonf,g and/monare the number of calibration
with glucuronic acid. This analyte was chosen for being the and monitoring samples in the subsets, Artde number of
one atwhich the properties of the probiotic are attribjd spectral factorg)2]. This procedure mirr'1ics the usual selec-

tion of factors by cross-validation and avoids the inclusion
2.6. Genetic algorithm implementation of a factor-depending term into the objective function. The
three selected RMSEP values were then averaged, defining
It is now widely accepted that multivariate calibration the figure of merit to be minimized by the algorithm. After
techniques such as partial least-squares greatly benefit fronstopping the GA, the following steps were implemented:
appropriate sensor selectig#3—-46]. Models constructed
using a suitably restricted subset of spectral data rather than
full spectra are extremely successful in extracting informa- (1) Repeat the above calculations a number of times (20

tion for the prediction of analyte concentrations in samples ~ in the present work), registering a statistical histogram
with complex background constituefitg]. Several selection of the inclusion of a given sensor range in the final top
methods have been reported. They include simulated anneal- ~ chromosome. Each time the calculation is repeated, the
ing [47], artificial neural network$48], genetic algorithms random partitioning of the calibration set (see above) is
[49], and extensive searches using moving window strategies  Performed again.

[50], among a great variety of other techniques (seq%é{. (2) Selectthe sensor ranges included in the histogram a cer-

and references therein). Comprehensive searches donotallow  tain percentage of times above a threshold, for example,
for the selection of multiple wavelength regions, because this ~ 70%.

activity is prohibitively time consuming for spectra com- (3) Perform cross-validation using the sensors obtained in
posed of a large number of data points like the presently  Step (2) in order to re-estimate the number of factors.
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(4) Repeat steps (1) through (3), reinitializing the GA with between the spectra. The solvent contribution is particularly
the sensors obtained in step (2) and setting the maximumimportant at 3920, 3490 and 3280ti(O—H stretching)
number of factors as obtained in step (3). Continue until and 1645 cm' (H-O—H bending)63]. For the latter reason,

the sensors selected in step (2) stabilize. only the region 1300—-900 cnt is useful for the quantitative
(5) Use the wavelengths selected in step (2) for PLS/ANNs analysis of the target analytes, as can be sedfign1B.
model building and prediction. Fortunately, the most intense bands present at glucose and

glucuronic acid are those located between 1200 and 906 cm
due to G-O—C stretching vibrationfl1].
3. Results and discussion
3.2. Application of multivariate tools
3.1. Spectral behaviour of the analytes and matrix
3.2.1. PLS-regression

Fig. 1A, shows the FTIR spectra correspondingto solvent, PLS, a standard method for analysing multicomponent
two individual pure components (glucose and glucuronic mixtures, has been systematically applied in a significant
acid) and a 7 days ferment solution, all of them collected variety of samples. The presence of certain types of mild
from aqueous solutions. The concentrations of the analytesnon-linearities can in principle be modelled by PLS using
were 10g -1, As can be seen, an intense overlapping exists additional spectral factoi84]. In order to apply both PLS-

1 and ANNs models, signals for the standard samples were
recorded in the range 4400-450¢th These spectra were
then subjected to PLS-1 analysis for a reduced region in
which the problem of the solvent interference is alleviated
(1400-900 cm?) and the one selected by using genetic algo-
rithms. The corresponding statistical parameters for the PLS
models are shown ifable 2. This table shows the spectral
regions, the optimum number of factors used for calibration,
the root mean square error for cross-validation (RMSECV),
the relative error of prediction (REP%), and the square of the
correlation coefficient for cross-validatior?ifor the cali-
bration set. The optimum number of factors — which allows
one to model the system with the optimum data volume
avoiding over fitting — was determined with the well known
cross-validation proceduf&?2]. This procedure removes one
training sample at a time and uses the remaining samples to
build the latent factors and regression. As can be seen in
Table 2, the calibration parameters are good enough for glu-
cose and glucuronic acid when the GA-selected region is
used for modelling, but not for gluconic acid. According to
the selected regions, the glucose peak at ca. 1188 amd

the glucuronic acid peak at ca. 1180 chare the most selec-
tive for the enhancement of the quality of the built models.
On the contrary, for gluconic acid probably there is no suf-
ficient sensitivity, and consequently its determination is not
possible at the present conditions.

Table 3shows the prediction results when applying the
bests PLS-1 models to the nine validation samples. The
obtained results for glucuronic acid (REP% =15.5) can be
considered acceptable if one takes into account the com-
1500 1400 1300 1200 1100 1000 900 plexity of the studied system. On the other hand, bad results
for glucose (REP% =27.7) were obtained, and a completely
unacceptable REP% = 122.0 for gluconic acid was found.
Fig. 1. (A) FTIR spectra in the complete spectral range (4500-708tm Fig. 2 shows the calibration spectra in the region
corresponding to water (black solid line), water solution of glucuronic acid  1400—900 cmil. This later figure also shows three spectra
10.0gL"* (green solid line), water solution of glucose 10.0¢lred solid o responding to real fermentation samples. Bad results were
line) and a 7 days ferment (blue solid line). (B) The four FTIR spectra of (A) . . . .
in the working reduced range (1500-900¢H (For interpretation of the obtained whenthe detel_’mmatlon ofthe three _analytes In thgse
references to colour in this figure legend, the reader is referred to the web S@Mples was made. This fact could be explained considering
version of the article.) that all the interferences were not correctly modelled when

5

Absorbance

T ¥ T = T . T
4000 3000 2000 1000
(A) Wavenumber (cm™')

Absorbance

(B) Wavenumber (cm™)



V.G. Franco et al. / Talanta 68 (2006) 1005-1012 1009

Table 2
Spectral regions and statistical parameters for the calibration
Glucuronic acid Gluconic acid Glucose
Total GA Total GA Total GA
Spectral region (wavenumbers) 1400-900 1205-1165 1300-900 1082-1002 1300-900 1795-1781, 1077-1070
Factors 5 5 5 5 6 4
RMSECV 1.51 0.24 0.47 0.34 1.47 0.38
REP% 30 5.41 54.5 26.21 25.7 6.13
2 0.513 0.985 0.273 0.523 0.553 0.981
Table 3
Results obtained when applying PLS at the GA-selected wave numbers on 1.50E-012 - =
the validation set
Sample  Glucuronic Gluconic acid Glucose | °
acid (gL @L™ L™ X " °
[} ox e ©
Actual  Found  Actual  Found Actual  Found 5 ®
O 0.00E+000 - @
1 2.48 242 025 048 248 2.62 83 - *
2 2.48 2.13 0.49 0.66 2.48 2.06 B = ®
3 2.48 2.99 0.77 1.02 2.48 2.22 ] ] * % .
4 4.96 3.89 0.25 0.98 4.96 4.21 @
5 4.96 4.06 0.49 0.95 4.96 4.84 -1.50E-012 ]
6 4.96 4.85 0.77 —0.40 4.96 3.52
7 7.5 7.30 0.25 0.80 7.5 7.11 . : : ‘ :
8 7.5 7.80 0.49 0.96 7.5 6.50 -1.20E-012 -B.00E-013 -4.00E-013 0.00E+000 4.00E-013 8.00E-013
9 7.5 707 077 093 75 7.60 POsEHs
REP% 155 122.0 27.7

Fig. 3. Score plot for first and second principal components for the fifteen
calibration samples (red circles) and real samples (blue stars). (For interpre-
tation of the references to colour in this figure legend, the reader is referred
building the calibration set. But a principal component anal- o the web version of the article.)

ysis (Fig. 3) showed similarity among the spectra plotted in

Fig. 2. On the other hand, a residual versus PLS predicted3.2.2. Artificial neural networks

values for all the three analytes as suggested in[28].is ANNSs are calibration methods especially created to model
showninFig. 4. Inthe latter figure it can clearly seen the pres- non-linear information, although they are also able to deal
ence of non-linearity. This fact could indicate the presence of with a linear behaviour and can often improve the results
other phenomena like non-linearities. Therefore, the use of ain comparison with a linear model. The so-called multilayer
more robust chemometric method should be postulated. feed-forward network§34,64] are often used for prediction
as well as for classification. In the present work we have used
an ANN that consists of three layers of neurons or nodes,
which are the basic computing units: the input layer with

Absorbance

¥ T ¥ T T T ¥
1300 1200 1100 1000 900
Wavenumber (cm‘1)

Fig. 2. FTIR spectra of calibration (black solid lines) and three real samples
in the restricted region (1300-900 c#) (blue circles). (For interpretation
of the references to colour in this figure legend, the reader is referred to the

web version of the article.) Fig. 4. Residual vs. PLS predicted values plot.
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a number of active neurons corresponding to the predictor Table 4
variables in regression, and one hidden layer with a number Statistical parameters for the ANNs models

of active neurons. The input and the hidden layer numbers arePaametros Glucuronic acid ~ Gluconic acid ~ Glucose
optimised during training, and the output layer has just one Architecture [2,3.1] [3,3,1] [3,2,1]
unit. The neurons are connectedin a hlerarchlca_l Manner, i.€.goectral region (cmt)  1205-1165 1082-1002 1795-1781
the outputs of one layer of nodes are used as inputs for the 1077-1070
next_layer ancis_o on. In the hidden layer the S|glm0|d function RMSER 124 113 0.879
Jf(x) = _1/(1 +e™) is used, and the output of the hidden neuron gysep. - 1.34 1.05 1.08
Jj» 0;, is calculated as: real 0.965 0.954 0.989

Fmon? 0.971 0.956 0.978

Weights 12 16 12

1)

m
Oj=1f [Z(Siwij + wp;)
i=1 . L

itoring set (RMSER\qn). On the other hand, it is important

wheres; is the input from neurori in the layer above, to  to consider that the ANN should not be overtrained, fact that
neurory in the hidden layerw;; are the connection weights  can be managed by taking into account that the number of
between neuronsandj, wy; is the bias to neuropandm objects should not be exceed that for the adjustable weights.
is the total number of neurons in the layer above. Both in In the presently trained for glucuronic acid ANNs, weights
the input and output layers linear functions are used. In the were (3x 4 x 1 =12). These figures were obtained after con-
presently used ANN, learning is carried out through the back- sidering the number of input and hidden layers plus one bias
propagation rulg¢34,64]. It is important to stress that ANNs neuron on each layer. It should be noted that the latter num-
trained with this rule have a remarkable advantage: there isber computed for gluconic acid is equal to 16 indicating an
no need to know the exact form of the analytical function on overtraining, but the determination of this component is not
which the model should be built. Thus, neither the functional advised considering the lack of accuracy calculated in the
type nor the number of parameter in the model needs to bepresent study.
given|[64]. ANNSs were applied with significant improvement of the
One of the two calibration sets, consisting of 15 samples PLS obtained result$able 5shows the results obtained when
was used totrainthe ANNSs. The other calibration setwas usedthis non-parametric multivariate model was applied on the
as monitoring set. The nine samples validation set was usednine samples validation set. As can be seen the improvement
as the test set for checking the ANNs predictive ability and on the prediction observed when ANNs are applied (ca. 50%)
for comparison between both calibration models. The num- explains the power of this method not only in modelling non-
ber of neurons in the input hidden layers was optimised by linearities butalsoin solving complex and overlapped signals.
trial and error. The finally selected architecture for the three The agreement between the predicted and the actual concen-
components is displayed ifable 4. The numbers between trations, although is not excellent for glucuronic acid and
brackets indicate how many active neurons are employed inglucose, demonstrate the potential of the method to simul-
each layer. This means that the employed architecture has twdaneously distinguish and quantify both components in the
input neurons, three hidden neurons and a single output neustudied concentration range.
ron for glucuronic acid. In order to find the best model, each  Finally, ANNs were applied on four real fermentation
ANN was trained with the above-mentioned training set, but samples in order to predict the acid glucuronic concentration
it was subsequently stopped before it learns idiosyncrasiesat the beginning of the process and after seven fermenta-
present in the training data. This was achieved by searchingtion days. Besides, these samples were spiked with known
the minimum value of the root mean square error for the mon- amounts of the analyte in order to compute the recovery of the

Table 5
Results obtained when applying ANNs on the validation set
Sample Glucuronic acid (g £1) Gluconic acid (g 1) Glucose (gL?1)

Actual Found Actual Found Actual Found
1 2.48 2.75 0.25 0.24 2.48 2,95
2 2.48 2.38 0.49 0.42 2.48 2.28
3 2.48 2.94 0.77 1.06 2.48 2.99
4 4.96 5.25 0.25 0.34 4.96 5.55
5 4.96 4.87 0.49 0.27 4.96 4.55
6 4.96 4.84 0.77 0.51 4.96 4.50
7 7.5 7.23 0.25 0.70 7.5 7.03
8 7.5 7.48 0.49 0.80 7.5 7.78
9 7.5 8.53 0.77 0.62 7.5 8.69

REP% 9.7 28.0 10.0
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Table 6

Results obtained on the glucuronic acid spiked real samples by using the FTIR/ANNs model

Sample Glucuronic acid (g 1)
Predicted in fermentation Spiked Predicted after addition Recovery (%)

12 4.1 (4) 8.6 14.5 121
4.3 (4) 8.8 14.8 119
4.0 (4) 8.4 14.3 123

20 - 10.2 12.2 120
- 10.5 12.8 122
- 10.3 11.5 112

22 4.0 (1) 10.4 15.4 110
4.2 (1) 11.1 16.2 108
4.1 (1) 10.1 15.7 115

3 - 10.4 11.0 106
- 10.2 9.9 97
— 10.4 10.5 101

32 5.4 (3) 10.5 19.9 138
5.4 (3) 10.7 18.5 122
5.4 (3) 10.1 20.5 150

4b - 10.2 12.2 120
- 10.2 13.9 136
- 10.2 12.6 124

42 5.5 (3) 10.7 14.2 81
5.4 (3) 10.4 12.5 68
5.2 (3) 10.1 11.7 64

a Seven days of fermentation.
b Initial.
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